Engineering Education & Leadership

Programs

Bachelor of Science

- B.S. in Engineering Innovation and Leadership (http://catalog.utep.edu/undergrad/college-of-engineering/engineering-education-leadership/engineering-innovation-leadership-bs/)

Chair

Dr. Roger Gonzalez (http://facultyprofile.utep.edu/default.aspx?ID=rgonzalez)

Professor

Peter Golding (http://facultyprofile.utep.edu/default.aspx?ID=pgolding)
Contact Information: pgolding@utep.edu (mtcortez@utep.edu); 915-747-8125
Education: Ph D, Monash University

Roger Gonzalez (http://facultyprofile.utep.edu/default.aspx?ID=rgonzalez)
Contact Information: rvgonzalez@utep.edu (mtcortez@utep.edu); 915-747-5905
Education: BS, The University of Texas at El Paso; MS, The University of Texas at Austin; Ph D, The University of Texas at Austin
Research Interests: Current research interests lie in four key domains: Intersegmental Loading under Dynamic Loading Conditions: specifically I have been investigating how time-varying individual muscle forces, both under normal and abnormal stimulation patterns, contribute to loading variations within the human knee joint (tibial plateau). This research has a direct application in understanding how ACL injuries change the inherent loading patterns on the knee and contribute toward joint degeneration. Ultra-low Cost Prosthetic Components: I have aimed to apply known biomechanical and product development principles in the research/design/development of ultra-low-cost components. Our seminal work has been in the development of a polycentric knee that can be locally made for under $20 and has been tested for engineering and human outcomes in Kenya, Senegal, and Bangladesh. Musculoskeletal Modeling: specifically as it relates to the human elbow, wrist and knee joints. I have sought to investigate the role of individual muscle forces and their subsequent muscle architecture toward both normal and pathological movement and motor control. Intelligent Control: This research entails the design and development of a graphical and musculoskeletal dynamic model using 4 degrees-of-freedom at the elbow and wrist joints to study the interaction of the major muscles crossing these joints. This computational model is used to investigate the feasibility of a hybrid optimal control / neural network algorithms to predict joint moments from muscle electrical signals (EMG). The predicted trajectory directs the position of the “Intelligent Prosthetic Arm” to test the reliability of the motion of the prosthetic arm under various tasks.

David Novick (http://facultyprofile.utep.edu/default.aspx?ID=novick)
Contact Information: novick@utep.edu (mtcortez@utep.edu); 915-747-6031
Education: BA, University of Oregon; JD, Harvard University; MS, University of Oregon; Ph D, University of Oregon

Scott Starks (http://facultyprofile.utep.edu/default.aspx?ID=sstarks)
Contact Information: ssstarks@utep.edu (mtcortez@utep.edu); 915-747-8856
Education: BS, University of Houston; Ph D, Rice University

Assistant Professor

Contact Information: mvaughan@utep.edu (mtcortez@utep.edu); 915-747-7829
Education: AS, Cedar Valley Community College; BS, LeTourneau University; MS, The University of Texas at Austin; Ph D, The University of Texas at Austin

Research Assistant Professor

Joshua Green (http://facultyprofile.utep.edu/default.aspx?ID=jtgreen2)
Contact Information: jtgreen2@utep.edu (mtcortez@utep.edu); 915-747-8427
Education: Ph D, The University of Texas at El Paso

Assistant Professor of Practice

Cole Joslyn (http://facultyprofile.utep.edu/default.aspx?ID=chjoslyn)
Contact Information: chjoslyn@utep.edu (mtcortez@utep.edu); 915-747-8427
Education: BS, The University of Texas at El Paso; M.Ed, The University of Texas at El Paso; Ph D, Purdue University

Engineering Education & Leadership
The University of Texas at El Paso
College of Engineering
Engineering Building, Room E-230
500 W University
El Paso, Texas 79968
E: eelfrontdesk@utep.edu
P: 915.747.8427